中山西门子授权一级代理商CPU供应商
引言:
随着我国的社会和经济的高速发展,环境问题日益,尤其是城市水环境的恶化,加剧了水资源的短缺,严重影响着人民群众的身心健康,这些情况已经成为城市可持续发展的严重制约因素;我国现阶段很多大中型城市的废水排放量大,已造成城市地表水的严重污染;三峡库区水环境保护事关三峡工程长期运行和长江中下游地区经济社会的可持续发展,因此受到国内外广泛关注,但目前各城市仍然是直接排放污水或因水处理自控系统不完善没处理好就把污水排放了,很多操作和检测监控过程仍停留在人工阶段,监控时间覆盖率低,手工采集样品缺乏科学性和代表性,难以反映企业和城市污水处理及排放连续变化的情况。大范围的建立污水处理系统及在线自动控制监控体系,势在必行。
系统简介:
本文介绍的污水处理厂位于重庆某县城边缘,厂区紧邻长江流域,处于三峡库区,该污水处理厂采用的是典型Orbal氧化沟工艺,日处理污水量5万吨,厂区主体构筑物有:综合楼、配电房、进水提升泵房、粗细格栅井及旋流沉砂装置、Orbal氧化沟、终沉池、污泥回流剩余泵井、脱水机房等;整个厂区设备及阀门均采用MCC和PLC两种控制方式,正常情况下可以实现仪表、PLC的自动检测控制及运行状况监控;下位机采用西门子400系列和300系列PLC,上位机采用北京华富Control2000软件。该厂自动控制系统于2004年12月完成调试,目前系统运行正常。
Orbal氧化沟水处理工艺起源于南非,后经不断改进和推广,在范围得到广泛应用。城市污水由管道集中后,水流经过粗格栅,将粗的垃圾去除,然后由提升泵将污水提高水头(后面工艺要求有高水头),再经过细格栅及旋流沉砂池,进一步去除小的垃圾和泥砂,污水进入水处理主体结构——氧化沟,污水在“O”型的氧化沟中经过曝气机调节曝气,使得污水得到缺氧、氧化、硝化、反硝化等反应,在该过程中完成BOD(生物耗氧量)、COD(化学耗氧量)的去除及污水脱氮的功能,并为下一步水的沉淀作好准备,经过氧化沟处理的水流入终沉池,加入Fe3+、或Al3+ 使得水中的(PO4)3- 得以沉淀,充分沉淀后,清水后经后排入长江。沉淀的污泥经脱水机滤干后焚烧处理。
二、厂区主要设备控制要求
1、粗细格栅机及其附属输送压榨设备的控制
定时控制:根据外来污水状况和运行经验,通过设定相关定时参数,自动控制格栅机的启动时间和停止时间。
液位差控制:在格栅机的前后均设置一台声波液位传感器,出格栅机的前后液位差。设定低液位差LDF2和高液位差LDF1,当检测到的液位差大于LDF1时,启动格栅机;当检测到的液位差LDF2时,停止格栅机(减少了运行时间,有效的节约能源)
(3) 切换开始时,变频器停止输出(变频器设置为自由停车),利用水泵的惯性将台水泵切换到工频运行,变频器连接到二台水泵上起动并运行,照此,将二台水泵切换到工频运行,变频器连接到三台水泵上起动并运行。
(4) 水位下降需要减泵时,系统将三台水泵停止,二台水泵切换到变频调节状态。水位继续下降,系统将二台水泵停止,台水泵切换到变频调节状态。
(5) 另外,设置软启动器作为备用。当变频器或PLC故障时,可用软起动器现场手动轮流起动各泵运行以保证供水。作为多台提升泵的自动控制,满足先启先停的原则,以优化资源的利用率;为了提升泵的,系统设置了提升泵的干运转保护;同时,系统还设置了泵的频繁启停保护,群启动保护等,以延长其使用寿命。
3、曝气系统的自动控制
生化池作为全厂污水处理的,具有举足轻重的作用。污水经过预处理后,在这里通过微生物吸附污水中的物,达到除磷脱氮的目的。对生化池的自动控制,主要是溶解氧浓度的控制。
曝气量自动控制系统作为一个恒值控制系统,系统给定一个保持不变的溶解氧值,通过PLC控制调节输出量(即曝气机开启台数),使被控量(实测氧化沟溶解氧浓度)不断地接近给定值。在这个系统中,要求稳定性和动态特性良好,被控量向给定值过渡的时间短,同时过程平稳,振荡幅度小。
曝气供氧系统是由曝气机和溶解氧仪共同组成的闭环系统,为反应池好氧段提供氧气,并维持好氧过程的溶解氧浓度值。依照好氧过程的溶解氧浓度值控制曝气机开启台数,维持溶解氧浓度值在一定的范围内变动。
一、系统概述:
本系统主要是针对煤粉蒸汽或热水锅炉的控制。具有锅炉水位自动控制、燃烧经济性自动控制、炉膛负压自动控制、炉压波动补偿点火系统、蒸汽压、缺水保护等自动联锁保护功能。
本系统的控制方式分自动/手动/就地,三种方式可转换。锅炉正常运行生产时,使用自动方式,设备按工艺要求的顺序和流程由控制台自动控制、联锁保护;手动时,可在控制台操作各设备,有互锁和联动关系;就地时,在现场操作可启停设备,闭锁,保护现场操作人员的。
二、系统的实现:
①、初始化
检测各电气设备已通电,并且有动作;然后依次检测锅炉水位是否下限,蒸汽压力是否限,煤粉罐料位是否下限,中间料仓是否下限,如上述条件有任意一条为“是”均不能。
②、点火
关闭一、二次风电动调节阀,然后依次启动引风机、二次风机、全开二次风阀门,如任意动作未执行,则停炉并报警;如设备运行正常,则延时吹扫1分钟,然后调节二次风电动阀至设定位置,启动点,此时监测火焰是否建立,延时30秒,启动一次风机,调节一次风阀门至设定位置,启动搅拌器,启动给料螺旋并调节至设定转速,此时监测火焰是否建立,如火焰建立,则油与煤粉混燃10分钟后关闭点,火焰检测器继续监测火焰是否建立,如上述任意条件为“否”或任意动作未执行,则执行停炉控制程序。
③、运行
实时监测蒸汽压力,如过设定压力,则执行停炉控制程序;如未出设定压力,则执行经济燃烧控制程序。
④、停炉
检测点是否关闭,然后依次停止搅拌器、供料螺旋、一次风机;将二次风阀门调至全开位置,延时吹扫1分钟后;检测炉膛温度直至设定温度后停止引风机、停二次风机,关闭一、二次风阀门。
锅炉紧急或异常停车:
2、锅筒水位自动控制
根据本系统锅炉容量,采用单冲量控制方式。
3、燃烧经济性自动控制
根据5分钟内对烟气中氧气含量检测的平均值,改变送风量的大小,进而达到调节锅炉经济、燃烧的目的。
燃烧经济性自动控制条件:
①、在一定的采样周期内,实际含氧量浓度变化率大于或小于工艺设定的含氧量目标值时,差值经PID运算后控制二次风阀执行器,执行器调整二次送风量,并在一定的时间内保持,以满足燃烧的经济性。
②、在一定的采样周期内,实际含氧浓度变化率在工艺含氧量目标值范围内时,系统不做运算,二次送风量保持原状态。
4、炉膛负压自动控制
考虑到燃烧过程的波动性,控制系统应设有死区不响应功能。但是当炉压持续出现波动时,起动给油泵,同时点火器动作并延时,当炉压趋于稳定,关闭点火器同时停给油泵。启动给油泵、点火器点火并在给定的延迟时间内炉压还不能趋于稳定状态,则停止锅炉的运行。
5、中间粉仓料位自动控制
根据粉仓重量控制煤粉罐旋转阀的启停,当中间粉仓重量到达下,启动旋转阀;当中间粉仓重量到达上,停止旋转阀。
6、煤粉锅炉系统连锁保护
①、水位保护
锅炉水位报警共设定水位高、水位高、水位低、水位低等4种水位报警信号。
锅炉水位保护共社水位高、水位低等两种保护。当水位高或低时停止锅炉运行。
②、蒸汽压力高保护。当蒸汽压力过设定的压力保护值时停止锅炉运行。
③、锅炉炉膛熄火保护。即锅炉在正常的运行状态下的非正常的熄火保护。
④、紧急停车保护。在现场设备调试及设备试运行期间,如果设备出现故障而设置的手动紧急保护功能
三、控制系统硬件配置:
根据工艺要求及操作使用方便,本系统将配置:低压电气柜一台和操作箱一台。
(1) 主要的低压电气元件选用富士。
(2) 数据集中采集及控制采用日立EH-150系列。
(3) 变频器采用日立L300P系列。
(4) 集中监控采用工控机。
(5) 温度传感器选用符合IEC标准的热电阻和热电偶。
(6) 锅筒水位采用配备就地式水位表和的压差变送器。
(7) 蒸汽压力采用蓝宝石高温压力传感器。
(8) 蒸汽流量和给水流量采用一体化带温补的涡街计。
四、 上位机控制系统:
五、 结束语:
该煤粉锅炉控制系统性高、自动化程度高、使用方便、操作简单、功能丰富、控制灵活,满足用户的控制要求,运行正常稳定。
随着激光技术的发展,激光测距传感器在检测领域得到了越来越多的应用。本文所研究的基于HOLLiAS-LEC G3小型一体化PLC的激光测距系统,对多台激光测距传感器所采集到的数据进行处理,并将数据传送给上位机,实现了对多台激光测距传感器的监控。
1 激光测距传感器的基本原理
激光测距传感器的基本原理是,通过测量激光往返于被测目标之间所需的时间,来确定被测目标之间的距离。激光测距传感器的原理和结构都很简单,是长距离检测有效的手段。
激光测距传感器工作时,由激光二管对被测目标发射激光脉冲。经被测目标反射后,激光向各方向散射。部分散射的激光返回到传感器的,被光学系统接收后,成像到雪崩光电二管上。雪崩光电二管是一种内部具有放大功能的光学传感器,能够检测其微弱的光信号。记录并处理激光脉冲从发射到返回所经历的时间,即可得到被测目标的距离。
2 PLC控制系统硬件设计
基于HOLLiAS-LEC G3小型一体化PLC的激光测距系统的功能结构图如图1所示。系统通过PLC的自由口通信,接收多台激光测距传感器发送过来的数据,根据传感器提供的数据格式解析数据包,计算出测量的距离。系统的功能还包括显示测量距离、在非正常情况下报警、与上位机进行数据交换等。
PLC的CPU模块选用HOLLiAS-LEC G3系列的LM3108模块,其性能价格比很高,广泛应用于工业控制的各个领域。LM3108模块的标准配置包括两个串行通信接口PORT0和PORT1,其中PORT0为RS485接口,PORT1为RS232接口。采用RS232接口建立PLC与上位机的通信,实现PLC程序的下装和监控。采用RS485接口建立PLC与现场仪表的通信。
本文针对通济堰取水枢纽工程中的闸制提出解决方案,该系统闸门数量为17孔,加上需改造的旧闸门5孔,总数达到22孔。而控制距离远的一孔闸门为500米。实现这么大数量的闸门的远程控制,工控机显然无法满足系统稳定、工程、施工费用少的要求。
在该工程设计中,利用ProfiBus 现场总线将PLC组网,由上位机来实现对闸门启闭机的远程控制。并将闸门开度、坝前和坝后水位、闸门荷重情况传送至上位机。由上位机根据现场PLC提供的信息对闸门运行状态进行监视,并在故障发生时提供故障信息。
本系统的控制器件采用德国西门子公司的S7-200,通讯总站采用S7-300。未采用中继站的情况下,通讯能力远达到1200米,能够该工程的远程控制需求。
1 结构及功能
该系统采用的是三层通讯组网方式,底层的是由22台S7-200组成的相互立的现场控制单元,中间层是由一台S7-300构成的通讯主站,上层是由上位机及服务器组成用户层。
除通讯功能外,该系统还具有以下功能:
控制功能:系统采用两种控制方式,即自动(即远方集中控制)和手动控制。
监测功能:系统自动采集闸门位置、闸门荷重、上下游水位及电气器件运行状态的信息。
保护功能:判断电机过载、闸门上下越限、电源供电异常、闸门失速/卡滞等,并对故障进行实时处理。
2 系统硬件设计
2.1 系统总线设计
在通济堰的22孔闸门中,每孔闸门用一个S7-200(CPU224)作为智能控制单元,构成一个现地控制柜。每个PLC 通过ProfiBus总线与一台S7-300(CPU315-DP)通讯,通讯由每个PLC所带的通讯模块(EM277)来实现。PLC-300作为系统的主站,负责收集从站(S7-200)上传的信息和下达命令。PLC-300与一台上位机通过CP6511卡相连,上位机作为远程操作平台。
2.11 ProfiBus-DP总线
DP总线电缆是西门子公司提供的总线电缆,其技术参数如表一所示。DP总线连接器选用9针D型RS485适用的连接器。
DP总线安装布线采用的是总线型拓扑结构,由于方案中只存在22个从站,因此可将22孔闸门的PLC从站挂在同一段中,而无须加载中继器。注:DP总线型结构中每个网段大可挂载32个从站,且在无中继器的情况下每个网段长距离为1900米。电缆大长度取决于传输速率。
以DP总线方式连接各个从站,需要在个和后一个站加装终端电阻,而中间的各个从站则只需将A、B数据线连接到总线上即可。
DP总线采用西门子的线缆和接头,通讯总线电缆入柜时屏蔽层与柜体连接接地。在线路铺设时,将通讯总线与17控制线一起布设,至于同一个电缆槽中。通讯总线在室外段通过地线铺设。
2.2 系统数据采集
在上位机对闸门启闭机施行控制的时候,需要实时地将闸门的闸位信息上传至微机。还要将闸前和闸后的水位信息同时上传。同时,还需要不间断地将闸门启闭机的荷重告知上位机,以便监控闸门是否出现卡滞。
在这个系统中,对闸位的监测采用旋转编码器来实现。由于旋转编码器的输出信号是16位的数字信号,所以增加一个PLC的16位数字量模块(EM221-16DI)。
水位信息由投入式压力水位传感器测量闸前闸后水位,S7-200自带有模拟量模块,水位传感器可直接接入,无须另加信号模块。
3 系统软件设计
系统上位机的用户层解决方案采用西门子的WinCC作为组态软件编制用户操作界面,并且实现与S7-300的通讯接口的衔接。操作界面采用人性化的图形界面。用户在利用组态软件下达对闸门的控制命令,同时能够在界面上看到闸门的实时状态,包括:闸门位置、闸门荷重、上下游水位、以及9类故障信息。
而S7-200与S7-300的内部程序编制则采用西门子的Step7来实现。
由于本系统要实现控制闸门启闭高度的技术要求,所以程序设计考虑用户可以自行选择采用开环控制或者是闭环控制的控制方式。
4 结束语
本系统作为PLC在另一种领域的应用,对于PLC的功能作了进一步的尝试。系统所采用的三层分布式网络结构在保通信过程畅通的前提下,确保了各个控制单元的。系统的设计能够满足工程现场长达500米的控制距离的需求,并能实现对控制对象的远程监控。该系统已经在通济堰渠取水改造工程信息自动化系统中投入使用,并且性能稳定,了预先的效果
本文针对通济堰取水枢纽工程中的闸制提出解决方案,该系统闸门数量为17孔,加上需改造的旧闸门5孔,总数达到22孔。而控制距离远的一孔闸门为500米。实现这么大数量的闸门的远程控制,工控机显然无法满足系统稳定、工程、施工费用少的要求。
在该工程设计中,利用ProfiBus 现场总线将PLC组网,由上位机来实现对闸门启闭机的远程控制。并将闸门开度、坝前和坝后水位、闸门荷重情况传送至上位机。由上位机根据现场PLC提供的信息对闸门运行状态进行监视,并在故障发生时提供故障信息。
本系统的控制器件采用德国西门子公司的S7-200,通讯总站采用S7-300。未采用中继站的情况下,通讯能力远达到1200米,能够该工程的远程控制需求。
1 结构及功能
该系统采用的是三层通讯组网方式,底层的是由22台S7-200组成的相互立的现场控制单元,中间层是由一台S7-300构成的通讯主站,上层是由上位机及服务器组成用户层。
除通讯功能外,该系统还具有以下功能:
控制功能:系统采用两种控制方式,即自动(即远方集中控制)和手动控制。
监测功能:系统自动采集闸门位置、闸门荷重、上下游水位及电气器件运行状态的信息。
保护功能:判断电机过载、闸门上下越限、电源供电异常、闸门失速/卡滞等,并对故障进行实时处理。
2 系统硬件设计
2.1 系统总线设计
在通济堰的22孔闸门中,每孔闸门用一个S7-200(CPU224)作为智能控制单元,构成一个现地控制柜。每个PLC 通过ProfiBus总线与一台S7-300(CPU315-DP)通讯,通讯由每个PLC所带的通讯模块(EM277)来实现。PLC-300作为系统的主站,负责收集从站(S7-200)上传的信息和下达命令。PLC-300与一台上位机通过CP6511卡相连,上位机作为远程操作平台。
2.11 ProfiBus-DP总线
DP总线电缆是西门子公司提供的总线电缆,其技术参数如表一所示。DP总线连接器选用9针D型RS485适用的连接器。
DP总线安装布线采用的是总线型拓扑结构,由于方案中只存在22个从站,因此可将22孔闸门的PLC从站挂在同一段中,而无须加载中继器。注:DP总线型结构中每个网段大可挂载32个从站,且在无中继器的情况下每个网段长距离为1900米。电缆大长度取决于传输速率。
以DP总线方式连接各个从站,需要在个和后一个站加装终端电阻,而中间的各个从站则只需将A、B数据线连接到总线上即可。
DP总线采用西门子的线缆和接头,通讯总线电缆入柜时屏蔽层与柜体连接接地。在线路铺设时,将通讯总线与17控制线一起布设,至于同一个电缆槽中。通讯总线在室外段通过地线铺设。
2.2 系统数据采集
在上位机对闸门启闭机施行控制的时候,需要实时地将闸门的闸位信息上传至微机。还要将闸前和闸后的水位信息同时上传。同时,还需要不间断地将闸门启闭机的荷重告知上位机,以便监控闸门是否出现卡滞。
在这个系统中,对闸位的监测采用旋转编码器来实现。由于旋转编码器的输出信号是16位的数字信号,所以增加一个PLC的16位数字量模块(EM221-16DI)。
水位信息由投入式压力水位传感器测量闸前闸后水位,S7-200自带有模拟量模块,水位传感器可直接接入,无须另加信号模块。
3 系统软件设计
系统上位机的用户层解决方案采用西门子的WinCC作为组态软件编制用户操作界面,并且实现与S7-300的通讯接口的衔接。操作界面采用人性化的图形界面。用户在利用组态软件下达对闸门的控制命令,同时能够在界面上看到闸门的实时状态,包括:闸门位置、闸门荷重、上下游水位、以及9类故障信息。
而S7-200与S7-300的内部程序编制则采用西门子的Step7来实现。
由于本系统要实现控制闸门启闭高度的技术要求,所以程序设计考虑用户可以自行选择采用开环控制或者是闭环控制的控制方式。
4 结束语
本系统作为PLC在另一种领域的应用,对于PLC的功能作了进一步的尝试。系统所采用的三层分布式网络结构在保通信过程畅通的前提下,确保了各个控制单元的。系统的设计能够满足工程现场长达500米的控制距离的需求,并能实现对控制对象的远程监控。该系统已经在通济堰渠取水改造工程信息自动化系统中投入使用,并且性能稳定,了预先的效果。